Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
minus(minus(x, y), z) → minus(x, plus(y, z))
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
minus(minus(x, y), z) → minus(x, plus(y, z))
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)
Q is empty.
Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
QUOT(s(x), s(y)) → QUOT(minus(x, y), s(y))
MINUS(minus(x, y), z) → PLUS(y, z)
PLUS(id(x), s(y)) → GT(s(y), y)
PLUS(s(x), x) → IF(gt(x, x), id(x), id(x))
GT(s(x), s(y)) → GT(x, y)
PLUS(s(x), s(y)) → IF(not(gt(x, y)), id(x), id(y))
PLUS(s(x), s(y)) → NOT(gt(x, y))
PLUS(s(x), x) → GT(x, x)
PLUS(s(x), x) → ID(x)
PLUS(s(x), s(y)) → ID(y)
PLUS(s(x), x) → PLUS(if(gt(x, x), id(x), id(x)), s(x))
QUOT(s(x), s(y)) → MINUS(x, y)
PLUS(s(x), s(y)) → GT(x, y)
MINUS(s(x), s(y)) → MINUS(x, y)
PLUS(s(x), s(y)) → PLUS(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))
NOT(x) → IF(x, false, true)
PLUS(s(x), s(y)) → ID(x)
PLUS(id(x), s(y)) → PLUS(x, if(gt(s(y), y), y, s(y)))
PLUS(id(x), s(y)) → IF(gt(s(y), y), y, s(y))
MINUS(minus(x, y), z) → MINUS(x, plus(y, z))
PLUS(s(x), s(y)) → IF(gt(x, y), x, y)
The TRS R consists of the following rules:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
minus(minus(x, y), z) → minus(x, plus(y, z))
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
QUOT(s(x), s(y)) → QUOT(minus(x, y), s(y))
MINUS(minus(x, y), z) → PLUS(y, z)
PLUS(id(x), s(y)) → GT(s(y), y)
PLUS(s(x), x) → IF(gt(x, x), id(x), id(x))
GT(s(x), s(y)) → GT(x, y)
PLUS(s(x), s(y)) → IF(not(gt(x, y)), id(x), id(y))
PLUS(s(x), s(y)) → NOT(gt(x, y))
PLUS(s(x), x) → GT(x, x)
PLUS(s(x), x) → ID(x)
PLUS(s(x), s(y)) → ID(y)
PLUS(s(x), x) → PLUS(if(gt(x, x), id(x), id(x)), s(x))
QUOT(s(x), s(y)) → MINUS(x, y)
PLUS(s(x), s(y)) → GT(x, y)
MINUS(s(x), s(y)) → MINUS(x, y)
PLUS(s(x), s(y)) → PLUS(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))
NOT(x) → IF(x, false, true)
PLUS(s(x), s(y)) → ID(x)
PLUS(id(x), s(y)) → PLUS(x, if(gt(s(y), y), y, s(y)))
PLUS(id(x), s(y)) → IF(gt(s(y), y), y, s(y))
MINUS(minus(x, y), z) → MINUS(x, plus(y, z))
PLUS(s(x), s(y)) → IF(gt(x, y), x, y)
The TRS R consists of the following rules:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
minus(minus(x, y), z) → minus(x, plus(y, z))
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 4 SCCs with 14 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
GT(s(x), s(y)) → GT(x, y)
The TRS R consists of the following rules:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
minus(minus(x, y), z) → minus(x, plus(y, z))
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
GT(s(x), s(y)) → GT(x, y)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- GT(s(x), s(y)) → GT(x, y)
The graph contains the following edges 1 > 1, 2 > 2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
PLUS(s(x), s(y)) → PLUS(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))
PLUS(id(x), s(y)) → PLUS(x, if(gt(s(y), y), y, s(y)))
PLUS(s(x), x) → PLUS(if(gt(x, x), id(x), id(x)), s(x))
The TRS R consists of the following rules:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
minus(minus(x, y), z) → minus(x, plus(y, z))
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
PLUS(s(x), s(y)) → PLUS(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))
The remaining pairs can at least be oriented weakly.
PLUS(id(x), s(y)) → PLUS(x, if(gt(s(y), y), y, s(y)))
PLUS(s(x), x) → PLUS(if(gt(x, x), id(x), id(x)), s(x))
Used ordering: Polynomial interpretation with max and min functions [25]:
POL(PLUS(x1, x2)) = max(x1, x2)
POL(false) = 0
POL(gt(x1, x2)) = 0
POL(id(x1)) = x1
POL(if(x1, x2, x3)) = max(x2, x3)
POL(not(x1)) = 0
POL(s(x1)) = 1 + x1
POL(true) = 0
POL(zero) = 0
The following usable rules [17] were oriented:
if(false, x, y) → y
if(true, x, y) → x
id(x) → x
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
PLUS(id(x), s(y)) → PLUS(x, if(gt(s(y), y), y, s(y)))
PLUS(s(x), x) → PLUS(if(gt(x, x), id(x), id(x)), s(x))
The TRS R consists of the following rules:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
minus(minus(x, y), z) → minus(x, plus(y, z))
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
PLUS(s(x), x) → PLUS(if(gt(x, x), id(x), id(x)), s(x))
The remaining pairs can at least be oriented weakly.
PLUS(id(x), s(y)) → PLUS(x, if(gt(s(y), y), y, s(y)))
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( if(x1, ..., x3) ) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
M( gt(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
Tuple symbols:
M( PLUS(x1, x2) ) = | 0 | + | | · | x1 | + | | · | x2 |
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
if(false, x, y) → y
if(true, x, y) → x
id(x) → x
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
PLUS(id(x), s(y)) → PLUS(x, if(gt(s(y), y), y, s(y)))
The TRS R consists of the following rules:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
minus(minus(x, y), z) → minus(x, plus(y, z))
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- PLUS(id(x), s(y)) → PLUS(x, if(gt(s(y), y), y, s(y)))
The graph contains the following edges 1 > 1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
MINUS(s(x), s(y)) → MINUS(x, y)
MINUS(minus(x, y), z) → MINUS(x, plus(y, z))
The TRS R consists of the following rules:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
minus(minus(x, y), z) → minus(x, plus(y, z))
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- MINUS(minus(x, y), z) → MINUS(x, plus(y, z))
The graph contains the following edges 1 > 1
- MINUS(s(x), s(y)) → MINUS(x, y)
The graph contains the following edges 1 > 1, 2 > 2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
QUOT(s(x), s(y)) → QUOT(minus(x, y), s(y))
The TRS R consists of the following rules:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
minus(minus(x, y), z) → minus(x, plus(y, z))
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
QUOT(s(x), s(y)) → QUOT(minus(x, y), s(y))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25]:
POL(0) = 0
POL(QUOT(x1, x2)) = x1
POL(false) = 0
POL(gt(x1, x2)) = 0
POL(id(x1)) = 0
POL(if(x1, x2, x3)) = x1
POL(minus(x1, x2)) = x1
POL(not(x1)) = x1
POL(plus(x1, x2)) = 0
POL(s(x1)) = 1 + x1
POL(true) = 0
POL(zero) = 0
The following usable rules [17] were oriented:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
minus(minus(x, y), z) → minus(x, plus(y, z))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
Q DP problem:
P is empty.
The TRS R consists of the following rules:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
minus(minus(x, y), z) → minus(x, plus(y, z))
plus(s(x), s(y)) → s(s(plus(if(gt(x, y), x, y), if(not(gt(x, y)), id(x), id(y)))))
plus(s(x), x) → plus(if(gt(x, x), id(x), id(x)), s(x))
plus(zero, y) → y
plus(id(x), s(y)) → s(plus(x, if(gt(s(y), y), y, s(y))))
id(x) → x
if(true, x, y) → x
if(false, x, y) → y
not(x) → if(x, false, true)
gt(s(x), zero) → true
gt(zero, y) → false
gt(s(x), s(y)) → gt(x, y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.